Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630661

RESUMO

Catalytic combustion is an important means to reduce toluene pollution, and improving the performance of catalytic combustion catalysts is of great significance for practical applications. The study of oxygen vacancies is one of the key steps to improve catalyst performance. Here, two different oxygen vacancy structures were well-defined and controllably synthesized by flame spray pyrolysis (FSP) to evaluate their effect on the catalytic combustion performance of toluene. The closely contacted oxygen vacancies (c-Vo) enhance the oxygen activation capacity of the catalyst, and the temperature of the first oxygen desorption peak and hydrogen reduction peak is 56 and 37 °C lower than the separated oxygen vacancy (s-Vo) sample, respectively. The oxygen activation energy barrier on the c-Vo is calculated to be negligible of only 0.04 eV. Both in situ DRIFT and DFT calculations indicate that the c-Vo structure accelerates the catalytic oxidation of p-toluene molecules. Moreover, due to the unique characteristics of high-temperature synthesis and rapid quenching, FSP brings excellent water resistance and high-temperature stability to the catalyst. In conclusion, utilizing the FSP in situ reduction strategy can create more c-Vo to improve the catalytic combustion performance of toluene.

2.
Entropy (Basel) ; 24(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35741539

RESUMO

In this paper, a wind energy conversion system is studied to improve the conversion efficiency and maximize power output. Firstly, a nonlinear state space model is established with respect to shaft current, turbine rotational speed and power output in the wind energy conversion system. As the wind velocity can be descried as a non-Gaussian variable on the system model, the survival information potential is adopted to measure the uncertainty of the stochastic tracking error between the actual wind turbine rotation speed and the reference one. Secondly, to minimize the stochastic tracking error, the control input is obtained by recursively optimizing the performance index function which is constructed with consideration of both survival information potential and control input constraints. To avoid those complex probability formulation, a data driven method is adopted in the process of calculating the survival information potential. Finally, a simulation example is given to illustrate the efficiency of the proposed maximum power point tracking control method. The results demonstrate that by following this method, the actual wind turbine rotation speed can track the reference speed with less time, less overshoot and higher precision, and thus the power output can still be guaranteed under the influence of non-Gaussian wind noises.

3.
Adv Mater ; 32(42): e2004670, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32939887

RESUMO

The development of oxygen reduction reaction (ORR) electrocatalysts based on earth-abundant nonprecious materials is critically important for sustainable large-scale applications of fuel cells and metal-air batteries. Herein, a hetero-single-atom (h-SA) ORR electrocatalyst is presented, which has atomically dispersed Fe and Ni coanchored to a microsized nitrogen-doped graphitic carbon support with unique trimodal-porous structure configured by highly ordered macropores interconnected through mesopores. Extended X-ray absorption fine structure spectra confirm that Fe- and Ni-SAs are affixed to the carbon support via FeN4 and NiN4 coordination bonds. The resultant Fe/Ni h-SA electrocatalyst exhibits an outstanding ORR activity, outperforming SA electrocatalysts with only Fe- or Ni-SAs, and the benchmark Pt/C. The obtained experimental results indicate that the achieved outstanding ORR performance results from the synergetic enhancement induced by the coexisting FeN4 and NiN4 sites, and the superior mass-transfer capability promoted by the trimodal-porous-structured carbon support.

4.
Adv Mater ; 32(18): e1904870, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31573704

RESUMO

The electrocatalytic conversion of earth-abundant simple molecules into value-added commodity chemicals can transform current chemical production regimes with enormous socioeconomic and environmental benefits. For these applications, 2D electrocatalysts have emerged as a new class of high-performance electrocatalyst with massive forward-looking potential. Recent advances in 2D electrocatalysts are reviewed for emerging applications that utilize naturally existing H2 O, N2 , O2 , Cl- (seawater) and CH4 (natural gas) as reactants for nitrogen reduction (N2 → NH3 ), two-electron oxygen reduction (O2 → H2 O2 ), chlorine evolution (Cl- → Cl2 ), and methane partial oxidation (CH4 → CH3 OH) reactions to generate NH3 , H2 O2 , Cl2 , and CH3 OH. The unique 2D features and effective approaches that take advantage of such features to create high-performance 2D electrocatalysts are articulated with emphasis. To benefit the readers and expedite future progress, the challenges facing the future development of 2D electrocatalysts for each of the above reactions and the related perspectives are provided.

5.
Adv Mater ; 30(28): e1801171, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29782677

RESUMO

The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2 ). A series of ultrathin 2D-hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D-TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D-MoS2 /Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm-2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.

6.
Chem Commun (Camb) ; 52(60): 9450-3, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27377872

RESUMO

A novel surface sulfur (S) doped cobalt (Co) catalyst for the oxygen evolution reaction (OER) is theoretically designed through the optimisation of the electronic structure of highly reactive surface atoms which is also validated by electrocatalytic OER experiments.


Assuntos
Cobalto/química , Oxigênio/química , Enxofre/química , Catálise , Elétrons , Estrutura Molecular , Oxirredução , Propriedades de Superfície
7.
Sci Rep ; 5: 15936, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26515442

RESUMO

Rational design of advanced carbon nanomaterials with a balanced mesoporosity to microporosity is highly desirable for achieving high energy/power density for supercapacitors because the mesopore can allow better transport pathways for the solvated ions of larger than 1 nm. Inspired by the inherent meso/macroporous architecture and huge absorption ability to aqueous solution of auricularia biomass, we demonstrate a new biomass-derived synthesis process for the three-dimensional (3D) few-layered graphene nanosheets incorporated hierarchical porous carbon (GHPC) nanohybrids. The as-prepared GHPC nanohybrids possess a balanced mesoporosity to microporosity with much improved conductivity, which is highly desirable for achieving high energy/power density for supercapacitors. As we predicted, they delivered a high specific capacitance of 256 F g(-1) at 1 A g(-1) with excellent rate capability (120 F g(-1) at 50 A g(-1)) and long cycle life (92% capacity retention after 10000 cycles) for symmetric supercapacitors in 1 M H2SO4. Based on the as-obtained carbon materials, a flexible and all-solid-state supercapacitor was also assembled, which can be fully recharged within 10 s and able to light an LED even under bended state. Such excellent performance is at least comparable to the best reports in the literature for two-electrode configuration under aqueous systems.

8.
Angew Chem Int Ed Engl ; 53(43): 11571-4, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25154353

RESUMO

An all-solid-state, lightweight, flexible, and wearable polymer solar cell (PSC) textile with reasonable photovoltaic performance has been developed. A metal textile electrode made from micrometer-sized metal wires is used as the cathode, and the surfaces of the metal wires are dip-coated with the photoactive layers. Two ultrathin, transparent, and aligned carbon nanotube sheets that exhibit remarkable electronic and mechanical properties were coated onto the modified metal textile at both sides as the anode to produce the desired PSC textile. Because of the designed sandwich structure, the PSC textile displays the same energy conversion efficiencies regardless of which side it is irradiated from. As expected, the PSC textiles are highly flexible, and their energy conversion efficiencies varied by less than 3% after bending for more than 200 cycles. The PSC textile shows an areal density (5.9 mg cm(-2)) that is lower than that of flexible film-based PSCs (31.3 mg cm(-2)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...